miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression.
نویسندگان
چکیده
Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type-1 (SCA1) neurodegenerative disease and some types of cancer; however, the role of CIC in prostate cancer remains unknown. Here we show that CIC suppresses prostate cancer progression. CIC expression was markedly decreased in human prostatic carcinoma. CIC overexpression suppressed prostate cancer cell proliferation, invasion, and migration, whereas CIC RNAi exerted opposite effects. We found that knock-down of CIC derepresses expression of ETV5 and CRABP1 in LNCaP and PC-3 cells, respectively, thereby promoting cell proliferation and invasion. We also discovered that miR-93, miR-106b, and miR-375, which are known to be frequently overexpressed in prostate cancer patients, cooperatively down-regulate CIC levels to promote cancer progression. Altogether, we suggest miR-93/miR-106b/miR-375-CIC-CRABP1 as a novel key regulatory axis in prostate cancer progression.
منابع مشابه
MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer
Accumulating evidences have revealed that dysregulated microRNAs (miRNAs) involve in the tumorigenesis, progression and even lead to poor prognosis of various carcinomas, including breast cancer. MiRNA-106b-5p (miR-106b) and miRNA-93-5p (miR-93) levels were confirmed to be significantly upregulated in breast cancer clinical samples (n=36) and metastatic cell line (MDA-MB-231) compared with thos...
متن کاملAgo-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression
Prostate cancer is a heterogeneous disease. MiR-375 is a marker for prostate cancer progression, but its cellular function is not characterized. Here, we provide the first comprehensive investigation of miR-375 in prostate cancer. We show that miR-375 is enriched in prostate cancer compared to normal cells. Furthermore, miR-375 enhanced proliferation, migration and invasion in vitro and induced...
متن کاملMicroRNA-106b is involved in transforming growth factor β1–induced cell migration by targeting disabled homolog 2 in cervical carcinoma
BACKGROUND MicroRNA-106b (miR-106b) was recently identified as an oncogene participating in cancer progression. Transforming growth factor β1(TGF-β1) is an indispensable cytokine regulating the local microenvironment, thereby promoting cervical cancer progression. However, the roles of miR-106b in cervical carcinoma progression and TGF-β1-involvement in the tumorigenesis of cervical cancer rema...
متن کاملInduction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters.
Androgen-insensitive DU145 and PC3 human prostate cancer cells express high levels of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and treatment of cells with methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) inhibited cell growth and downregulated Sp1, Sp3, and Sp4 expression. CDODA-Me (15 mg/kg/d) was a potent inhibitor of tumor growth in a mouse xenograft ...
متن کاملA microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice
While decades of research have identified molecular pathways inducing and promoting stages of prostate cancer malignancy, studies addressing dynamic changes of cancer-related regulatory factors in a prostate tumor progression model are limited. Using the TRAMP mouse model of human prostate cancer, we address mechanisms of deregulation for the cancer-associated transcription factors, Runx1 and R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oncotarget
دوره 6 27 شماره
صفحات -
تاریخ انتشار 2015